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Abstract
Calculations and measurements of the electric fields, induced by a lightning
strike, are important for understanding the phenomenon and developing
effective protection systems. In this paper, a novel approach to the calculation
of the electric fields due to lightning strikes, using a relativistic approach,
is presented. This approach is based on a known current wave-pair model,
representing the lightning current wave. The model presented is one that
describes the lightning current wave, either at the first stage of the descending
charge wave from the cloud or at the later stage of the return stroke. The
electric fields computed are cylindrically symmetric. A simplified method
for the calculation of the electric field is achieved by using special relativity
theory and relativistic considerations. The proposed approach, described in this
paper, is based on simple expressions (by applying Coulomb’s law) compared
with much more complicated partial differential equations based on Maxwell’s
equations. A straight forward method of calculating the electric field due to a
lightning strike, modelled as a negative–positive (NP) wave-pair, is determined
by using the special relativity theory in order to calculate the ‘velocity field’
and relativistic concepts for calculating the ‘acceleration field’. These fields
are the basic elements required for calculating the total field resulting from
the current wave-pair model. Moreover, a modified simpler method using sub
models is represented. The sub-models are filaments of either static charges or
charges at constant velocity only. Combining these simple sub-models yields
the total wave-pair model. The results fully agree with that obtained by solving
Maxwell’s equations for the discussed problem.

PACS numbers: 03.30.+p, 41.20.Jb, 92.60.Pw

1. Introduction

A lightning strike is a natural electric phenomenon, which produces an electromagnetic field
that expands spherically at the velocity of light. A direct lightning strike can be devastating and
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may injure human beings, and electrical and electronic equipment. Even an indirect lightning
strike is dangerous due to the above-mentioned electromagnetic field. Over-voltages in
elements of electronic and electrical systems and devices can be detected. These over-voltages
may damage the equipment, disrupt magnetic memory devices, burn sensitive components and
even destroy complete systems [1–5].

The calculations and measurements of the electric and magnetic fields, induced by the
lightning strike, are important for understanding the phenomenon and developing effective
protection systems. There are different approaches to address this problem, and extensive work
has been done on the subject in the last 40 years. Analytical solutions for the electromagnetic
fields based on Maxwell’s equations were developed by different researchers. Uman and
McLain [6] calculate the magnetic field due to various assumed forms of channel current as a
function of time. Expressions for the far field in the time domain and computer solutions for
the total near and far fields are presented in later research by Uman, McLain and Krider [7].
This work is based on an antenna model. Other techniques for calculating the electromagnetic
fields due to lightning are the monopole and dipole techniques presented by Uman and
Rubinstein [8] and Thottappillil and Rakov [9]. An interesting analysis of the electromagnetic
field from a vertically placed and moving square wave and a wire carrying uniform line
charge are discussed by Rubinstein and Uman [10] and later on by Thottappillil, Uman and
Theethayi [11]. Time-domain analysis is important for deeper understanding of the transient
phenomenon. Two approaches of the time-domain analysis of the electric fields from lightning
return stroke are reviewed and compared by Thottappillil and Rakov [12]. One is the Lorentz
condition approach and the other is the Continuity equation approach. A complementary
effect to those discussed above is an important effect of retardation. The origin of this effect is
the well-known Lienard–Weichert potential to a single point charge. This idea was developed
to the so-called F-factor analysed for different cases by Thottappillil, Uman and Rakov [13].

Another calculation method is based on a wave-pair model presented by Braunstein
[14]. This time-domain model describes the lightning wave as a step function, and the field
is calculated directly from Maxwell’s equations, with the addition of the so-called retarded
potentials. Although this method gives an analytical result, it is complicated, requiring solving
partial differential equations, and therefore not easy to apply.

In this paper, a novel method of calculating the induced electric fields is presented. The
electric field due to a lightning strike is determined by using the Special Relativity Theory
and relativistic concepts in order to calculate the ‘velocity field’ and the ‘acceleration field’
[15]. These fields are the basic elements required for calculating the total field resulting from
the current wave-pair model. The results were compared with the results obtained by using
Maxwell’s equations. Comparison of the two methods yields identical results [16]. This
approach yields to simple calculations and include inherently the retardation effects that are
considered in the above-mentioned works. Therefore, the material presented supports the
previous work based on classic electrodynamics yet introduces different and interesting new
approaches.

2. Analytical solution: the direct approach

2.1. General

The calculation method presented in this paper is based on a model that describes the lightning
current wave, either in the first stage of the descending of a charge wave from a cloud (figure 1)
or at the later stage of the return stroke [17]. The source is defined as a semi-infinite thin
charge filament (current wave) that is cylindrically symmetric [14]. This filament of charge
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Figure 1. The descent of the current wave from the cloud.
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Figure 2. The opposite polarity two wave model.

is lowered from the cloud towards the ground by a down-going leader, causing electric field
strength in the surrounding space. The field is propagating as a sphere from the front of the
down-going current wave. The medium around the source is free space and the ground is
assumed as the horizontal plane surface of infinite conductivity.

The model consists of two step-current waves starting at the origin that is the bottom of
the cloud. The first one is a positive polarity wave travelling in the positive x-direction at a
velocity of v. The second one is a negative polarity wave travelling in the −x direction, also
at a velocity of v, see figure 2.

Analysing the response of the system to a step function is justified by the fact that if the
induced electric fields due to a step function are known, and then by using the Convolution
Theory, the response to any other function form (i.e. a typical real lightning current wave) can
be obtained. Moreover, the step response is easier to find and track and represents the physical
descent of the charges at the discharge stage of the lightning generation phenomena.

Due to the fact that the source of the lightning current is not defined, an NP step wave-pair
is used, as shown in figure 2, where the negative polarity current wave moving in the opposite
direction is required in order to satisfy the boundary conditions of the problem and thus, to
avoid the necessary definition of the source. (See the appendix.) This wave-pair model is with
total agreement with the conservation of the charge and therefore this model is suitable in the
case of the source of the lightning discharge.

The electric field is calculated at an observation point P(ξ, r) as a function of time, t. The
step function represents moving charges, where each charge is stationary at the origin prior to
t = 0. At t = 0, the charges are infinitely accelerated to velocity v, and then continue to travel
with a constant velocity v. The field of a charge moving at a constant velocity (‘the velocity
field’) and the field of an accelerating charge (‘the acceleration field’) must be determined
prior to the calculation of the electric field induced by the charges of the complete model.

2.2. The velocity field

A combination of Coulomb’s law and the special relativity theory is the basis for the calculation
of the field due to a charge q travelling at a constant velocity v, see figure 3.
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Figure 3. A charge moving at a constant velocity.

The electric field components in the x- and y-directions at the observation point P(ξ , r),
are

Evx = q

4πε0

γ ξ

[(γ ξ)2 + r2]3/2
· δ−1

(
t − ρ

c

)
Evy = q

4πε0

γ r

[(γ ξ)2 + r2]3/2
· δ−1

(
t − ρ

c

)



where γ = 1√
1 − v2

c2

(1)

where ξ and r are the horizontal and vertical distances from the origin, ρ =
√

ξ 2 + r2 is the
radial distance from the origin and γ is the special relativity factor. The calculation is in
Cartesian coordinates due to the fact that only two-dimensional surface is considered. The
above-mentioned expression is calculated, using the Lorentz transformation, for transforming
the coordinates to a coordinate system, in which the source charge q is stationary. In the new
coordinate system, the electric field is calculated by means of Coulomb’s law. The calculated
field is then transformed back to the original coordinate system by the reverse Lorentz
transformation [15]. This expression is valid only when the information about the charge
q at its constant velocity has reached the observation point P(ξ, r). For an observer at that
point, equation (1) yields the electric field strength only after the charge has passed point x̂ on
the x-axis. This means that

x̂

v
� 1

c

√
ξ 2 + r2 ⇒ x̂ � βρ

where β = v

c
and ρ =

√
ξ 2 + r2


 . (2)

2.3. The electric field of a point charge accelerated to a constant velocity

Consider the electric field lines of a stationary charge at the origin (x = 0) at t = 0. At t = 0
it is instantaneously accelerated to a constant velocity v. The principle field lines, in this case,
are shown in figure 4.

Two types of electric fields can be observed in figure 4 [18], namely, the ‘far field’ and
the ‘near field’. Consider these two fields.1

(1) The ‘far field’ exists due to the fact that prior to the initial charge motion, it was stationary
at the origin. The information about its position and movement travels at the velocity of
light as an electromagnetic wave. The radiating electromagnetic wave has no preferences
for the direction; therefore, it propagates in a sphere defined as SOI (sphere of influence).
Thus, the electric field at a radius larger than ct must be identical to the one due to
stationary charge at the origin.

1 Note that the so-called ‘near field: and ‘far field’ described here are not the same known fields in antenna theory/.
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Figure 4. The field lines of a charge accelerated to a constant velocity v after being stationary at
the origin.
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Figure 5. The electric field due to a charge travelling at a constant velocity.

(2) The ‘near field’ exists at a radius smaller than ct. Since the charge is moving at a constant
velocity v, the electric field has a form as described in equation (1).

These two electric fields can be superimposed only by considering a field in a form of a
spherical cap, expanding at the velocity of light, with its centre at the origin, x = 0, see figure 4.
The spherical cap describes the electric field due to the acceleration of the charge.

The followings may be concluded about the acceleration field.

(1) The electric field on the surface of the cap is parallel to it.
(2) If the acceleration is not instantaneous, the width of the cap is proportional to the time

of acceleration, i.e. between v = 0 and the constant velocity v. In the extreme infinite
acceleration case (step function), the width of the cap will be zero, and the field will be
an impulse function parallel to the surface of the cap.

In order to study the acceleration field, the expression for the field of a charge, moving
at constant velocity, equation (1), should be rewritten in spherical coordinates. The origin at
the point x̂ represents the location of the wave front with a distance ρ ′ and an angle θ ′ to the
observers point P(ξ, r), as shown in figure 5.

Thus, the expressions obtained are

�Eqv = q

4πε0

1

ρ ′
1 − β2

[1 − β2 sin2 θ ′]3/2
�iρ ′ for ρ < ct (3)

where 


ρ ′ =
√

(ξ − x̂)2 + r2

ξ − x̂ = ρ ′ cos θ ′

r = ρ ′ sin θ ′
(4)

and �iρ ′ is a unit vector in the ρ ′ direction.
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Figure 6. The spherical cap representing the emerging flux of the stationary charge.

If the charge begins its motion at the origin, x = 0, equation (3) represents then the field
within a sphere with a radius ct centred at the origin. Outside this sphere, the field is identical
to the field of a static point charge at the origin, x = 0. The equation describing this field in
spherical coordinates is

⇀

EqS = q

4πε0

1

ρ2
�iρ ρ > ct (5)

where

ρ =
√

ξ 2 + r2. (6)

Rewriting the same equation in Cartesian coordinates equation (5) yields

ExqS = q

4πε0

ξ

ρ3
δ−1

(ρ

c
− t

)
EyqS = q

4πε0

r

ρ3
δ−1

(ρ

c
− t

)

 . (7)

There is a discontinuity in the transition from the near field to the far field, at the sphere, whose
radius is ρ = ct. Moreover, the flux penetrating any spherical cap from its interior region is
not equal to the flux emerging from it into the exterior region. Since there is no source of flux
in-between there must be a third flux on the sphere cap itself. This problem is discussed now.

Assume a spherical cap S, whose origin is at x = 0. The cap has a radius ρ and a polar
angle θ0, relative to the x-axis, see figure 6.

The exterior field is uniform and therefore, the emerging flux φ1 from S, is the calculated
static field, see equation (5), multiplied by the surface of the cap. This means that

φ1 = q

4πε0

1

ρ2

∫ θ0

0
2πρ2 sin θ ′ dθ ′

= q

4πε0
2π [1 − cos θ0]. (8)

A circle defines the basis of the cap S(ρ, ξ), for which ξ = ρ cos θ0. Thus equation (8) can be
rewritten as

φ1 = q

4πε0
2π

[
1 − ξ

ρ

]
. (9)

The same cap, S, creates an angle φ0 with the x-axis, which is the axis of the primed system (a
system that travels together with the point charge at a constant velocity v). Since the interior
field is radial, the flux penetrating S from the interior is equal to the flux which crosses a
spherical cap S′, centred at x′ = 0 and subtending a polar angle φ0, see figure 7.

The flux, in this case, is calculated in the same manner as above:

φ2 = q

4πε0

1

ρ ′2

∫ ϕ0

0
2πρ ′2 sin θ

1 − β2

[1 − β2 sin2 θ ]3/2
dθ

= q

4πε0
2π

[
1 − cos ϕ0√

1 − β2 sin2 ϕ0

]
. (10)
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Figure 7. The spherical cap representing the incident flux of the moving charge.

The relations between the spherical and Cartesian coordinate systems are given in
equation (4). Thus, equation (10) can be rewritten as

φ2 = q

4πε0
2π

[
1 − ξ − x̂√

(ξ − x̂)2 + (1 − β2)r2

]
(11)

where x′ is the distance the charge travelled from the origin, at a velocity v, at time t. As
x̂ = vt and v = cβ, equation (11) takes the form

φ2 = q

4πε0
2π

[
1 − ξ − cβt√

(ξ − cβt)2 + (1 − β2)r2

]
. (12)

Since there are no charges near or at the discontinuity point (at the transition surface between
the two types of fields), there is no other source that can add to the electric flux. The flux
entering any finite (or infinitesimal) volume must be equal to the flux leaving the same volume.
Due to this fact, the difference between the fluxes φ1 − φ2 must be compensated by a third
flux emerging from the cap, but confined to the sphere surface. Due to the symmetry, it can
be understood that this flux must be uniformly distributed along the circular edge of S, whose
length is 2πr. This requires an infinite electric field in the θ direction, which is confined to the
surface of the sphere and still contributes a finite flux. Therefore, the flux has to be multiplied
by a Dirac δ-function, which implies that the field is infinite but is located on the surface of
the sphere. Thus, its integral along the edge of the spherical cap will produce the desired
difference between the interior and exterior fluxes. The expression for this type of field is

�Ea = φ1 − φ2

2πr
δ(ρ − ct)�iθ0

= q

4πε0

1

r

[
ξ

ρ
− ξ − cβt√

(ξ − cβt)2 + (1 − β2)r2

]
δ(ρ − ct)�iθ0 . (13)

In the presence of a δ function in equation (13), cβt = βρ and therefore

�Ea = q

4πε0

βr

ρ(ρ − βξ)
δ(ρ − ct)�iθ0 . (14)

Equation (14) describes the field component due to a point charge that instantaneously
accelerates from zero velocity to v, at t = 0.
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In Cartesian coordinates, the unit vector �iθ0
can be expressed as

�iθ0 = 1

ρ
[−�ixr + �iyξ ]. (15)

Thus the ‘acceleration field’ can be rewritten as2

Eax = − q

4πε0

βr2

ρ2(ρ − βξ)
δ(ρ − ct)

Eay = q

4πε0

βrξ

ρ2(ρ − βξ)
δ(ρ − ct)


 . (16)

2.4. The total field of a point charge accelerating to a constant velocity

The complete expression for the evolution of the electric field in time produced by the charge
at the observation point P(ξ , r), consists of the contribution of the three fields.

(1) The static electric field that hold until the sphere of influence of the accelerated charge
has reached the observation point as described in equation (7).

(2) The ‘acceleration field’ produced by the infinite acceleration of the charge as described
in equation (16).

(3) The ‘velocity field’ produced by the charge in its uniform motion described in
equation (1).

Equation (17) expresses this in terms of the variable τ = t − t′, when at time t = t′ the
charge is accelerated from its stationary position to velocity v = βc.

Exq = Esx + Eax + Evx

= q

4πε0

[
ξ

ρ3
δ−1

(ρ

c
− τ

)
− βr2

ρ2(ρ − βξ)
δ(ρ − cτ) +

γ ξ

[(γ ξ)2 + r2]3/2
· δ−1

(
τ − ρ

c

)]
Eyq = Esy + Eay + Evy

= q

4πε0

[
r

ρ3
δ−1

(ρ

c
− τ

)
+

βrξ

ρ2(ρ − βξ)
δ(ρ − cτ) +

γ r

[(γ ξ)2 + r2]3/2
· δ−1

(
τ − ρ

c

)]




.

(17)

2.5. The total field of the NP wave-pair model

The calculated total field at the observation point P(ξ, r) due to an NP wave-pair will be the
superposition of the electric field produced by a filamentary stream of positive charges (positive
current wave), with a line charge density λ, and the electric field produces by a filamentary
stream of negative charges (negative current wave), with a line charge density −λ, see
figure 8.

Each current wave emerges from the origin at t = 0 with a velocity of v = βc, and forms
a current of λβc which extends over 0 < x < c βt. The expression for the electric field strength
due to the positive current wave is, again, composed of three terms.

(1) A term that represents the static electric field strength that holds until the spherical cap of
the acceleration field reaches the observation point,

2 Note that this expression for the ‘acceleration field’ matches radiation field in [19].
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ESx+ = λ

4πε0
· ξ

ρ3
·
∫ t

0
βcδ−1

(ρ

c
− τ

)
dτ

= λ

4πε0
· ξ

ρ3
·
∫ t

0
βc

[
1 − δ−1

(
τ − ρ

c

)]
dτ

= λ

4πε0
· βξ

ρ2

ESy+ = λ

4πε0
· r

ρ3
·
∫ t

0
βcδ−1

(ρ

c
− τ

)
dτ

= λ

4πε0
· βr

ρ2




. (18)

(2) A term that represents the ‘acceleration field’:

Eax+ = − λβc

4πε0

∫ t

0

βr2

ρ2(ρ − βξ)
δ(ρ − cτ) dτ

= − λ

4πε0

β2r2

ρ2(ρ − βξ)

Eay+ = λβc

4πε0

∫ t

0

βrξ

ρ2(ρ − βξ)
δ(ρ − cτ) dτ

= λ

4πε0

β2rξ

ρ2(ρ − βξ)




. (19)

(3) A term that represents the ‘velocity field’ of the charge wave. It is better to integrate the
expression over the distance x = cβτ rather the time τ , yielding

Evx+ = λ

4πε0

∫ x1

βρ

dx
γ (ξ − x)

[γ 2(ξ − x)2 + r2]3/2

= λ

4πε0
·
{

1

γ
·
[

1

[γ 2(ξ − x1)2 + r2]1/2

]
− 1

γ 2
· 1

ρ − βξ

}

Evy+ = λ

4πε0

∫ x1

βρ

dx
γ r

[γ 2(ξ − x)2 + r2]3/2

= λ

4πε0
· 1

r

{
γ (ξ − X1)

[γ 2(ξ − x1)2 + r2]1/2
− βρ − ξ

ρ − βξ

}




. (20)

By the same manner, to calculate the electric field strength due to the negative current
wave, the following expressions are obtained.
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(1) Static field:

ESx− = − λ

4πε0
· βξ

ρ2

ESy− = − λ

4πε0
· βr

ρ2


 . (21)

(2) The ‘acceleration field’:

Eax− = − λ

4πε0

β2r2

ρ2(ρ + βξ)

Eay− = λ

4πε0

β2rξ

ρ2(ρ + βξ)


 . (22)

(3) The ‘velocity field’:

�Evx− = λ

4πε0
·
{

1

γ
·
[

1

[γ 2(ξ + x1)2 + r2]1/2

]
− 1

γ 2
· 1

ρ + βξ

}

�Evy− = λ

4πε0
· 1

r

{
1

γ
·
[

γ (ξ + X1)

[γ 2(ξ + x1)2 + r2]1/2

]
+

βρ + ξ

ρ + βξ

}

 . (23)

The total field due to the positive and negative current waves is a net sum of all the terms of
the different fields in the x-direction for obtaining Ex, and all the terms of the fields directed to
the y-axis for obtaining Ey.

Note that the static field is redundant, as the contribution of a positive static charge, at the
origin, negates the contribution of the negative one. Therefore, the total field is the sum of
the velocity and acceleration fields only. These fields are defined by equations (19), (20), (22)
and (23), thus the total field is

Ex = Evx + Eax

= λ

4πε0
·
{

1

γ
·
[

1

[γ 2(ξ − x1)2 + r2]1/2
+

1

[γ 2(ξ + x1)2 + r2]1/2

]
− 2√

ξ 2 + r2

}

Ey = Evy + Eay

= λ

4πε0
· 1

r

[
γ (ξ − x1)

[γ 2(ξ − x1)2 + r2]1/2
− γ (ξ + x1)

[γ 2(ξ + x1)2 + r2]1/2
+ 2

ξ√
ξ 2 + r2

]




. (24)

3. Modified analytical solution by sub-models

3.1. General-segments of moving charges

The argument that in a closed segment, the field strength due to a uniformly moving charge is
equal to the field strength due to a static charge is obvious only in the Maxwellian field theory.
The reason for that is that the moving charges constitute a constant current that produces a
constant magnetic field and therefore does not contribute a change in the electric field due to
a constant charge density.

By using relativistic considerations and approach, the above-mentioned argument is not
so obvious, because the evolution of the electric field strength, at the observation point P(ξ, r)

consists of several different kinds of fields, namely,

(1) a static field,
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Figure 9. A closed segment of uniformly moving charges.
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Figure 10. The evolution of the field from the observer’s point of view.

(2) an acceleration field.

(3) a velocity field.

In a closed segment, the charges are stationery at point X1 (see figure 9), then they are
accelerated with an infinite acceleration to the velocity v, travelling to the other end of the
segment X2 and decelerate to zero velocity at X2.

The calculation of the electric field strength values is done for the observation point
P(ξ, r). At this point, all the information arrives at a time delay, due the fact that the
electric field strength expands from the charge to the observation point at the velocity of light.
Therefore, seen from P(ξ, r), the evolution of the field due to the segment of charges is as
described in figure 10.

The calculation of the field at the observation point is constructed of the following
contributions.

(1) A static electric field strength at X1, due to a point charge of magnitude of λβρ ′′. The
reason for this charge magnitude is that the information about the initial movement of the
charge has to travel a distance of ρ ′ to the observation point P(ξ, r). During this time the
charge travels a distance of βρ ′. Therefore, all charges that are in between X1 and X1 +
βρ ′ are contributing a field strength of a static charge at X1. Thus, these charges can be
looked upon as a static point charge located at X1, with a magnitude of λβρ ′.
The electric field strength values due to these charges in Cartesian coordinates are

Exs1 = λβ

4πε0
· ξ − X1

ρ ′2

Eys1 = λβ

4πε0
· r

ρ ′2


 . (25)
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(2) The ‘acceleration’ field of the charge density λ at point X1. The magnitude of this field is
(from equation (22)):

Exa2 = − λ

4πε0

β2r2

ρ ′2(ρ ′ − β(ξ − X1))

Eya2 = λ

4πε0

β2r(ξ − X1)

ρ ′2(ρ ′ − β(ξ − X1))


 . (26)

(3) The ‘velocity’ field of the charge density of λ, in the interval of X1 + βρ ′ = x = X2 + βρ ′′.
The interval margins are justified by the fact that the information about the initial
movement of the charge reaches the observation point at the same time when the charge
has travelled a distance of βρ ′, as mentioned above. In the same manner at point X2 the
charge stops. Due to the fact that the information must travel a distance of ρ ′′ to the
observation point P(ξ, r). From the observer’s point of view, the charge stopped at X2 +
βρ only. Therefore, the expressions for the electric field strengths, due to the ‘velocity’
field using the Special Relativity Theory is

Exv3 = λ

4πε0

∫ X2+βρ ′′

X1+βρ ′
dx

γ (ξ − x)

[γ 2(ξ − x)2 + r2]3/2

= λ

4πε0
·
{

1

γ
·
[

1

[γ 2(ξ − (X2 + βρ ′′))2 + r2]1/2

]

− 1

γ
·
[

1

[γ 2(ξ − (X1 + βρ ′))2 + r2]1/2

]}

Eyv3 = λ

4πε0

∫ X2+βρ ′′

X1+βρ ′
dx

γ r

[γ 2(ξ − x)2 + r2]3/2

= λ

4πε0
· 1

r
· γ ·

[
ξ − (X2 + βρ ′′)

[γ 2(ξ − (X2 + βρ ′′))2 + r2]1/2

− ξ − (X1 + βρ ′)
[γ 2(ξ − (X1 + βρ ′))2 + r2]1/2

]




. (27)

(4) An ‘acceleration field’ of a charge density of λ, accelerating at X2 to a constant velocity of
v. When the charges reach point X2 they stop. This can be described as the symmetrical
case to the acceleration procedure at X1. However, there is some difficulty to explain
the physical reason for the charge’s deceleration. The same results of calculating the
electric field strength due to the decelerating charges to zero velocity at the point X2, can
be obtained by calculating the electric field strength due to accelerating negative charges,
with charge density of −λ at point X2, in the opposite direction of the wave propagation.
These charges are accelerated from a zero velocity to a constant velocity of v. The
acceleration of the charges will start at time t = (X2 − X1)/v, after initiation. The electric
field strength due to this ‘acceleration’ field is

Exa4 = λ

4πε0

β2r2

ρ ′′2[ρ ′′ − β(ξ − X2)]

Eya4 = − λ

4πε0

β2r(ξ − X2)

ρ ′′2[ρ ′′ − β(ξ − X2)]


 (28)

where ρ ′′ =
√

(ξ − X2)2 + r2.
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(5) A static electric field strength at X2, due to a point charge with the magnitude of −λβρ ′′.
This field calculated as above (see field contribution 1) is

Exs5 = −λβρ ′′

4πε0
· (ξ − X2)

ρ ′′3 = −λβ

4πε0
· (ξ − X2)

ρ ′′2

Eys5 = −λβρ ′′

4πε0
· r

ρ ′′3 = −λβ

4πε0
· r

ρ ′′2


 . (29)

The total electric field strength at the observation point P(ξ, r), is the sum of the five fields
contributions described above.

Thus the total field in the x-axis direction is

Ex =
5∑

i=1

Exi
= Ex1 + Ex2 + Ex3 + Ex4 + Ex5 = λ

4πε0
·
[

1

ρ ′′ − 1

ρ ′

]

= λ

4πε0
·
[

1√
(ξ − X2)2 + r2

− 1√
(ξ − X1)2 + r2

]
, (30)

and the field strength in the y-axis direction is

Ey =
5∑

i=1

Eyi
= Ey1 + Ey2 + Ey3 + Ey4 + Ey5

= λ

4πε0
· 1

r
·
[

ξ − X1√
(ξ − X1)2 + r2

− ξ − X2√
(ξ − X2)2 + r2

]
. (31)

The obtained result (see equations (30) and (31)) are consistent with the results obtained by
calculating the electric field strengths due to a static charge density λ enclosed in the segment
[X1, X2]. Therefore, the contribution of a segment of static charge is identical to the case that
in that same segments the charges are travelling at constant velocity.

3.2. The sub-model

3.2.1. Graphical presentation. A step function can be observed as the case, in which charges
are stationary at the origin and then at t = 0, they are accelerated at an infinite acceleration
to a constant velocity of v. Thereafter, their velocity is constant. Due to this acceleration,
the electric field strength at any observation point P(ξ, r) cannot be determined by using the
Special Relativity Theory only, as it deals with the cases, in which the charges move with a
constant velocity only. Moreover, from the observer’s point of view, one part of the current
wave travels at a constant velocity v and the other part of the current wave is stationary
at the origin. Furthermore, a solution by means of the Special Relativity Theory demands
transformation of the problem to a different coordinate system, using Lorentz transformation.
In this case, the source is stationary and the observation point can travel at a constant velocity.
In the new coordinate system, the field strength is determined using Coulomb’s law and then the
coordinates are transformed back to the original system by the reverse Lorentz transformation.
In the present case, the model has two current waves travelling in opposite direction. Therefore,
it is impossible to find a coordinate system in which the conditions for using Special Relativity
Theory are satisfied.

However in order to use the Special Relativity Theory, the model is assembled of sub-
models in such a manner that all parts of the model are either stationary or travelling at a
constant velocity. Thus, the electric field strength is calculated for each part (sub-model) for



5186 Y Beck et al

x

y P( ,r)
Ex

Ey

II

v

x

y P( ,r)
Ex

Ey

v

x

y P( ,r)
Ex

Ey

III
IV

v
x

y P( ,r)
Ex

Ey

v

vI ,

vI ,−
x

y P( ,r)
r Ex

Ey

(a) (b)

(c) (d )

(e)

I

Figure 11. Assembly of the model by the different sub-models.

itself. Then by superposition theory the sum of the electric field strengths of all parts yields
the desired solution. See figure 11.

In figure 11(a), the current wave, marked as I, consists of charges originating at infinity
on the negative side of the x-axis. These charges move at a constant velocity v towards the
positive direction of the x-axis as shown. Section 2 is a static segment of a charge density
with an opposite polarity. This segment is located between infinity, on the negative side of
the x-axis and the origin. The net sum of the electric field strengths at the observation point
P(ξ, r) is the same as the electric field strength at the same point, calculated by the current
wave described in figure 11(b). The same situation is described in figures 11(c) and (d) for
a current wave of opposite polarity, travelling in the opposite direction. The electric field
strength due to the total model (see figure 11(e)) is the sum of the field strengths due to the
current waves described in figures 11(b) and (d).

In figures 11(a) and (c) the influence of the current wave ‘tail’ is eliminated by adding the
field strength due to the uniformly moving charges and the field strength due to the opposite
polarity static charges. This operation has been justified, both physically and mathematically,
in the last section.
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3.2.2. Mathematical calculation. The wave-pair model is the step function response of a
transient current wave. The model is constructed the by sub-models. Each sub-model consists
of charges travelling at a constant velocity, v, only and segments of static charge densities.
Therefore, the calculations of the electric field strength due to each part of the model are
simplified. It is done either by the Special Relativity Theory for the travelling waves, or by
calculating field strengths of static charge density distributions.

(1) The electric field strength of the wave travelling from −∞ to X1.. In figure 11(a) the
section marked as I is a current wave travelling at a constant velocity v. The calculation
of the electric field at the observation point P(ξ, r) is done, as before, by transforming the
coordinates at hand into a new coordinate system. In this new system, the travelling wave
is stationary and the observation point is travelling in the opposite direction, according
to Lorentz transformation. Thus, the electric field strength is calculated by Coulomb’s
law and then it is transformed back by the inverse Lorentz transformation to the original
coordinate system [15].
The resulting electric field strengths at the observation point P(ξ, r) are

�EXI = kλ

∫ X1

−∞

γ (ξ − x) dx

[γ 2(ξ − x)2 + r2]3/2
= kλ

1

γ [γ 2(X1 − ξ)2 + r2]1/2

�EYI = kλ

∫ X1

−∞

γ r dx

[γ 2(ξ − x)2 + r2]3/2
= kλ

γ (X1 − ξ)

r[γ 2(X1 − ξ)2 + r2]1/2




. (32)

(2) Cancellation of the wave’s ‘tail’ from −∞ to the origin. A calculation of the electric field
strength at the observation point P(ξ, r) due to a static charge density of −λ, located on
the x-axis from −∞ to the origin (see figure 11(a) II) is added to the total field strengths
calculated by (32). This is done in order to cancel the influence of the electric field
strength, due to the part of the travelling wave in the region of −∞ to the origin. The
solution yields the electric field strengths due to a current wave travelling in the positive
direction of the x-axis, as shown in figure 11(b).
The electric field strengths due to the above-mentioned static charge density are

�EXII = −kλ

∫ 0

−∞

(ξ − x) dx

[(ξ − x)2 + r2]3/2
= −kλ · 1√

ξ 2 + r2

�EYII = −kλ

∫ 0

−∞

r dx

[(ξ − x)2 + r2]3/2
= −kλ · 1

r
· ξ√

ξ 2 + r2




. (33)

Thus, the total electric field strengths of the travelling current wave, see figure 11(b), are

�EX = �EXI + �EXII = kλ
1

γ [γ 2(X1 − ξ)2 + r2]1/2
− kλ

1√
ξ 2 + r2

�EY = �EYI + �EYII = kλ
γ (X1 − ξ)

r[γ 2(X1 − ξ)2 + r2]1/2
+ kλ · 1

r
· ξ√

ξ 2 + r2




. (34)

(3) The electric field strength of the total model. A similar calculation to the former one,
demonstrated in the last section, can be done for the current wave travelling in the
negative direction of the x-axis. The total electric field strengths due to the wave shown in
figure 11(d) are

�EX = �EXIII + �EXIV = kλ
1

γ [γ 2(X1 + ξ)2 + r2]1/2
− kλ

1√
ξ 2 + r2

�EY = �EYIII + �EYIV = −kλ
γ (X1 + ξ)

r[γ 2(X1 + ξ)2 + r2]1/2
+ kλ · 1

r
· ξ√

ξ 2 + r2




. (35)
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The solution for the total field strength of the model, presented in figure 11(e), is obtained
by adding the field strength calculated at the observation point due to the positive travelling
current wave, given by equation (34) and the field strength calculated for the negative
charge density travelling in the negative direction of the x-axis, see equation (35). The
total electric field strengths are

�EX = kλ

(
1

γ [γ 2(X1 − ξ)2 + r2]1/2
+

1

γ [γ 2(X1 + ξ)2 + r2]1/2
− 2√

ξ 2 + r2

)

�EY = kλ · 1

r

(
γ (X1 − ξ)

[γ 2(X1 − ξ)2 + r2]1/2
− γ (X1 + ξ)

[γ 2(X1 + ξ)2 + r2]1/2
+

2ξ√
ξ 2 + r2

)



. (36)

The obtained results (equation (36)) are identical with the electric field strengths calculated
by using Maxwell’s equations [14].

4. Conclusion

In this paper, the electric field due to a lightning strike is determined by using Special
Relativity Theory in order to calculate the ‘velocity field’, and some relativistic concepts for
calculating the ‘acceleration field’. These fields are the basic elements required for calculating
the total field resulting from the current wave-pair model or any other step wave model.
The relativistic calculations are simpler than solving Maxwell’s equations, due to the fact
that in the Special Relativity Theory, the coordinates are transformed to a new coordinate
system in which the source is stationary; and basically the calculations are performed by
Coulomb’s law.

The paper describes two analytical approaches to the problem.

(1) The direct approach-based on calculating the fields directly from the given model. In this
approach, the two segments of the model are analysed separately. The field is calculated
for each of the different stages of the evolution of the step wave in time. (static field,
acceleration and moving at constant velocity). The net sum of all fields for the two
segments gives the total field.

(2) The modified sub-models approach. The model is divided into sub-models. The sub-
models consist of either segment of constant velocity moving charges, or segments of
static charges. Each segment’s electric field strength is calculated at the observation point
P(ξ, r), by means of Relativity Theory for the moving charges or Coulomb’s law for the
static charges. The superposition of all these fields yields the total electric field strength
at the given observation point. A prove is given for justifying the operation of summing
static and constant moving charge filaments.

(3) Although the wave-pair model was considered in this paper, we note that the relativistic
approach could have been employed to other models mentioned in the introduction.

The results of both approaches are identical and been compared with the results obtained
by using Maxwell’s equations. The comparison yields identical results. Thus, in this paper, a
novel, different and simpler and scientifically complimentary approach is presented. This
relativistic approach gives solutions to the problem in a simple mathematical approach
compared to solving Maxwell’s equations which are partially differential equations. The
presented approach can be applied to other models if they can be presented as a composition
of step functions.



The induced electric field due to a current transient 5189

Iv,
x

y
P( ,r)r

1x

'ρ

ds
s

Figure A1. A current wave travelling to the right of the x-axis at a velocity of v.

Appendix

The method of calculating the induced electric fields due to lightning strike via relativity
approach is compared with the results via Maxwell’s equations. Therefore, a brief review of
the calculation method through Maxwell’s equations is presented in this appendix.

Maxwell’s equations for free space are

rot �E = −∂ �B
∂t

rot �H = �J +
∂ �D
∂t

div �D = ρ

div �B = 0




(A.1)

where the vector potential �A is defined, based on the fourth term of equation (A.1):

�B = rot �A (A.2)

from equations (A.1) and (A.2):

�E = −grad V − ∂ �A
∂t

. (A.3)

Based on the above-mentioned equations, together with Ohm’s law, the wave equations for v

and �A can be obtained:

∇2V − 1

c2

∂2V

∂t2
= − ρ

ε0

∇2 �A − 1

c2

∂2 �A
∂t2

= −µ0 �J


 . (A.4)

These equations are valid only when the following boundary condition is fulfilled:

div �A +
1

c2

∂V

∂t
= 0. (A.5)

In a cylindrical system, where all conductors are usually thin, it is worthwhile to introduce λ,
the charge per unit length, instead of ρ, and the current I, instead of �J . The general solutions
for the scalar and vector potential equations, at point P(ξ, r), which lies at a distance ρ ′ from
an infinitesimal conductor element ds (see figure A1), are

V = 1

4πε0

∫
s

λ
(
s, t − ρ ′

c

)
ρ ′ · ds

�A = µ0

4π

∫
s

I
(
s, t − ρ ′

c

)
ρ ′ · d�s




. (A.6)

These are the well-known ‘retarded potentials’.
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Figure A2. (a) An N–P wave-pair, (b) a P–N wave-pair.

Equation (A.6) is to be applied for the calculation of the electric field strength components
at the point P(ξ , r), due to a current wave travelling on the x-axis with the velocity of v,
see figure A1. With the knowledge of the scalar and vector potentials, the field strength
�E can be obtained from equation (A.3). Prior to calculating �E, the vector and scalar

potentials determined by equation (A.6) should be checked to fulfil the boundary condition of
equation (A.5). In the case of a single current wave as described above, see figure A1,
equation (A.5) is not satisfied. The reason for that is that the source of the current wave has
not been taken into account. Thus, the physical picture is distorted.

Trying various types of wave models leads to the conclusion that the only topography of
waves that satisfies the boundary condition of equation (A.5) is N–P or P–N wave-pairs, see
figure A2.

An N–P wave-pair is a positive polarity current wave, which travels in the positive direction
of the x-axis at a velocity of v, and a negative polarity current wave travelling in the opposite
direction, see figure A2(a). A P–N wave-pair is the opposite case of an N–P wave-pair, see
figure A2(b). In these cases, the source is physically represented.

Solving the potential equations for an N–P or a P–N model gives solutions which satisfy
equation (A.5). These potentials are used in order to calculate the electric field strength �E and
the solutions are given in equation (24) in the paper.
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